GSH or Palmitate Preserves Mitochondrial Energetic/Redox Balance, Preventing Mechanical Dysfunction in Metabolically Challenged Myocytes/Hearts From Type 2 Diabetic Mice
نویسندگان
چکیده
In type 2 diabetes, hyperglycemia and increased sympathetic drive may alter mitochondria energetic/redox properties, decreasing the organelle's functionality. These perturbations may prompt or sustain basal low-cardiac performance and limited exercise capacity. Yet the precise steps involved in this mitochondrial failure remain elusive. Here, we have identified dysfunctional mitochondrial respiration with substrates of complex I, II, and IV and lowered thioredoxin-2/glutathione (GSH) pools as the main processes accounting for impaired state 4→3 energetic transition shown by mitochondria from hearts of type 2 diabetic db/db mice upon challenge with high glucose (HG) and the β-agonist isoproterenol (ISO). By mimicking clinically relevant conditions in type 2 diabetic patients, this regimen triggers a major overflow of reactive oxygen species (ROS) from mitochondria that directly perturbs cardiac electro-contraction coupling, ultimately leading to heart dysfunction. Exogenous GSH or, even more so, the fatty acid palmitate rescues basal and β-stimulated function in db/db myocyte/heart preparations exposed to HG/ISO. This occurs because both interventions provide the reducing equivalents necessary to counter mitochondrial ROS outburst and energetic failure. Thus, in the presence of poor glycemic control, the diabetic patient's inability to cope with increased cardiac work demand largely stems from mitochondrial redox/energetic disarrangements that mutually influence each other, leading to myocyte or whole-heart mechanical dysfunction.
منابع مشابه
Restoring redox balance enhances contractility in heart trabeculae from type 2 diabetic rats exposed to high glucose.
Hearts from type 2 diabetic (T2DM) subjects are chronically subjected to hyperglycemia and hyperlipidemia, both thought to contribute to oxidizing conditions and contractile dysfunction. How redox alterations and contractility interrelate, ultimately diminishing T2DM heart function, remains poorly understood. Herein we tested whether the fatty acid palmitate (Palm), in addition to its energetic...
متن کاملInsulin regulation of glutathione and contractile phenotype in diabetic rat ventricular myocytes.
Cardiovascular complications of diabetes mellitus involve oxidative stress and profound changes in reduced glutathione (GSH), an essential tripeptide that controls many redox-sensitive cell functions. This study examined regulation of GSH by insulin to identify mechanisms controlling cardiac redox state and to define the functional impact of GSH depletion. GSH was measured by fluorescence micro...
متن کاملp53 promotes cardiac dysfunction in diabetic mellitus caused by excessive mitochondrial respiration-mediated reactive oxygen species generation and lipid accumulation.
BACKGROUND Diabetic cardiomyopathy is characterized by energetic dysregulation caused by glucotoxicity, lipotoxicity, and mitochondrial alterations. p53 and its downstream mitochondrial assembly protein, synthesis of cytochrome c oxidase 2 (SCO2), are important regulators of mitochondrial respiration, whereas the involvement in diabetic cardiomyopathy remains to be determined. METHODS AND RES...
متن کاملType 1 Diabetic Akita Mouse Hearts Are Insulin Sensitive but Manifest Structurally Abnormal Mitochondria That Remain Coupled Despite Increased Uncoupling Protein 3
OBJECTIVE Fatty acid-induced mitochondrial uncoupling and oxidative stress have been proposed to reduce cardiac efficiency and contribute to cardiac dysfunction in type 2 diabetes. We hypothesized that mitochondrial uncoupling may also contribute to reduced cardiac efficiency and contractile dysfunction in the type 1 diabetic Akita mouse model (Akita). RESEARCH DESIGN AND METHODS Cardiac func...
متن کاملPerfusion of hearts with triglyceride-rich particles reproduces the metabolic abnormalities in lipotoxic cardiomyopathy.
Hearts with overexpression of anchored lipoprotein lipase (LpL) by cardiomyocytes (hLpL(GPI) mice) develop a lipotoxic cardiomyopathy. To characterize cardiac fatty acid (FA) and triglyceride (TG) metabolism in these mice and to determine whether changes in lipid metabolism precede cardiac dysfunction, hearts from young mice were perfused in Langendorff mode with [14C]palmitate. In hLpL(GPI) he...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 61 شماره
صفحات -
تاریخ انتشار 2012